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THE APPLICATION Ol? GREEN’S THEOREM
OF BOUNDARY-VALUE PROBLEMS IN

SUPERSONIC WING THEORY’

By MAX A. HEASLET and EAEVAED Lowx

TO THE SOLUTION
LINEARIZED

SUiWMARY

Following dw introduction of the linearized partial dij@e-n-
tial equation. for nonsteady -three-dimensional comprwm”ble
$OW, general methods of solution are giitm for the two- and
three-dimensional steady-state md twodirnensional unsteady-
etate equations. It is also pointed out that, in the absence of
thickness e~ects, linear theory yields solutions conm”stentw“th
the assumptions made when applied to lifting-surface problems
for swept-backplanforms at sonic speeds. 2%esolutions of the
particular eguaticmsare determined in all cases by mecms of
Green’s theoremand thus depend on theuse of (A-em’s eguivaltmt
layer of sources, sinks, and doublets. Improper integrals in
the. supersonic theory are treated by m.emnsof Hadan-mrd’s
“finite part” technique.

Four applications of the general SOJW50TMare gicen: First,
the angle-of-attack load distribution for a super~onic, yawed,
triangular plate with subsonic leading edges is determined.
Second, doumwash is calculated along the center line in the
plane of the wnyawed triangwhwmung. Third, the growth of
load distribution is presentedfor subsonic and supersonic t-wo-
dimensionaljlat plates either startingjrorn rest at a wn.~orm
celocity or experiencing wn.abrupt angle-ofdtack change. Tle
transient effects on lifi-cwrreslope are then calculated. Finally
the load distribution and [tj%urce slope of a- spetijfc swept-
backlifting swrfacearedeterminedat afree-stream Mach number
of one.

INTRODUCTION

If the effects of viscosity are assumed smaUand shock-free
compressible flow is considered, the velocity field about a
two- or three-d.imensiond body placed in a uniform free
stream is irrotat-ionaland thus possesses a velocity potential.
In the determination of the pressures exerted on such a body
or in the calculation of the induced docity components, the
theoretical aerodpa.micist is concerned essentially with
finding the velocity potential of the flow field and, thus,
must determine the solution of a second-order nonlinear
partial diflkrent.ial equation subject to certain boundary
conditions. The known mathematical Micultiss that-arise
in the treatment of such a problem make it expedient to
resort to simplifying assumptions. In applied aerodynamics,

~PresentM by Dr. Eeeslet at the WI InternationidCongess of Applied Meekni@
September194S,London.

howwer, efficiency of flight.at high speeds has focused atten-
tion on bodies ihducing relatively small velocities throughout
the field of flow and, as a consequence, the demands of engi-
neeri~~ furnish a guide for t.he mathematical simplification
of the theory. The so-calIed linearized theory of compressi-
ble flow was developed to solve such problems and, aIthough
considerable -workof a more precise nature has been presented
in two dimensions, a large amount of investigation in
unsteady fight and in three-dimensional wing theory remains
to be completed within the framework of the simplifying
conditions.

The present paper is restricted (o a discussion of wing
theory subject to the assumptions of linearized compressibk
flovi. It. therefore employs solutions of ~aplace’s equation
and the wave equation for cases where the boundary condi-
tions are specified @ the plane of the wing. Attention will
be directed primariIy to the analysis of steady-state condi-
tions ahhough an equiwdence wiUbe established between the
two-dimensional differential equation containing the time
variable and the equation applying to three-dimensional
supersonic wing theory, Solutions in all cases will be
obtained through the use of Green’s theorem and t-heresultant
concept of Green’s equiwdent la~~erof sources, sinks, and
doublets. The correspondence between the theoretical devel-
opment for subsonic and supersonic speeds ia particularly
useful since experience related to analysis in either flight
regime is more readily transferred.

In view of the widespread use of sources, sinks, and doub-
lets in low-speed studies and the fact that the earlier applic~
tions t.o supersonic wing theory by Prandtl (reference 1)
and SchlicMng (reference 2) corresponded to the use of
Green’s equivalent layer, it is notable that later emphasis
shifted to other methods of solution. sources alone were
used by Puckett (reference 3) to create symmetrical non-
~ifting wings and were also applied to the study of lifting
triangular wings with supersonic. leading edges, but the use
of source, sink, and doub~et-sheets has not been as extensive
as might have been expected. This anomaly is even more
apparent in view- of the vast mathematical and physical
literature centering around the use of Green’s theorem. One
possible explanation may stem from the fact that the interest
of the mathematician and physicist in the wave equation
has ariaen in connection -with problems in acoustics, optics:
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and vibrating membranes. Such problems introduce bound-
ary conditions of the Cauchy type, that is, initial conditions
need to be known both for the unknown function and its
rate of change. The supporting smface for such boundary
conditions cuts the characteristic cone of an arbitrary point
in a closed curve and has been called by Hadamard (reference
4) a duly inclined surface. In..aerodynamics the supporting
surface is nonduly inclined and cuts the characteristic surface
or Mach cone along the “a~cof a hyperbola and, as a result,
the problem is no longer of the Cauchy type and the analysis
becomes similar to that used in subsonic theory in the solu-
tion of Lapla.ce’s equation. Prior to the interest of the theo-
retical aerodynamicist in supersonic wing theory, it appears
that little attention in application was paid to this type of
SOIUtion.

The material presented here is divided into two main
divisions: Analysis and Applications. In the first part of
the Analysis division, the linearized differential equation for
nonsteady compressible flow is given together with the
underlying assumptions made. Specific forms of this equa-
tion for two- and three-dimensional steady states and two-
climensiona.1unsteady states.. are then considered. It is
pointed out in particular that for swept-back lifting surfaces
linearized theory yields consistent solutions at a free-stream
~Mach number of one although the analysis of arbitrary
thickness distributions is not possible. Following the var-
ious equations, Green’s theorem is applied to find, in terms
of the known boundary conditions, the desired solution by
means of source and doublet distributions.

Applications of the general methods are confined to four
problems. As an example of the manner in which angle-of-
attack load distributions are determined for a lifting flat
plate, the case of a yawed t~i.angularwing with subsonic
leading edges is solved. Doublet distributions are then
applied in the second problem to the calculation of down-
wash behind the same wing in an unyawed position. Third,
the growth of load distribution with time is derived for a
superso.tic two-dimensional flat plate either experiencing a
sudden sidcing motion or starting from rest at a uniform
velocity. Such distributions are of value in the calculation
of indicnd lift functions and can be. used, together with
Duhamel’s integml, in the study of certain dynsmic maneu-
vefi. The final application considers at a Mach number
equal to one the case of a swept-back lifting surface with
tips normal to the free-stream direction. .0

LIST OF IMPORTANT SYMBOLS

speed of sound in free stream
K lateral distance to inboard tip of swept wing

(See fig. 9)
AR aspect ratio
b semispan
co chord length (two dimensions)

root chord (thretidimensions) ‘
c,c(e) load distribution factor introduced in. equation

(16)
CL lift coefficient
cLa lift-curve slope
C,a(t’) indicial lift function

()pressure coefficient ‘<Eo

complete elliptic integr~l of the second kind with
modulus k

complete elliptic integrals of the second kind—-
with moduli ~1 —G2, ~1 —802,respectively

complete elliptic integrals of the seconct kind , ,
with moduli kl, ka,respectively

J
0$~1–k’ sin’ @d@

J# d4 —
o ~l—kz sinz +

.-

pmameter defined in equation (29)
CO130

x—crJ
x—c.
Coeo

complete elliptic integral of the first kind with
mochdus k

complete elliptic integrals of
moduli kl, kz, respectively

tan ~.
free-stream Mach number
local static pressure
free-stream static pressure

the fist kin: with ‘

free-strewn dynamic pressure
(ipo’’’)’)

Jx-,y+/?2(x-r)f

J(X–02+P2[(Y-T) 2+(-021

4(-H2-B2[(Y-T)2 +(-H21
*

distance traveled in half-chords
area of wing
time
perturbation velocity, components parallel to
x, y, z axes, respectively
jump in value of u, w at the z= Oplane
velocity of free stream
Cartesian coor~inates
coordinates introduced in equation (2)
angle of attack in radians

load coefficient ((731-CPU)

semivertex angle of yawed triangular wing
angle between lifting element and x axis
angles between leading edges of yawed triangle

and x axis
B tan 6, 13tan ~o,p tan h
sideslip angle of yawed triangle

(Mach angle arc sin &
)o

Cartesian coordinates
free-stream density
region of integration in equation (10)
perturbation velocity potential

sign denoting “finite part” of integral

e
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SUBSCRIPTS

u subscript denot@~ -ralue of -wuiable on upper surface of
wing

1 subscript denoting due of variable on lower surface of
*

ANALYSIS

TEEPARTIALDD?l?EREXmALEQUATION-S

Basic deferential equation,— Consider an aerodpcimic
bocly fly@ at,an arbitrary Mach number M, in air initiaIIy
at rest. If a Cartesian coordinate system x,y,z is tied rela-
tive to the body, the body may then be assumed stationary
ancl situa.ted in a free stream with the same Mach number.
If the free-stream velocity vector is paraLlel to and in the
direction of the positive z axis and if + denotes the perturba-
tion velocity potent,ial for isentropic flow, the Iinem-ized
partial differential equation for @maybe written in the form

.

where aa is the velocity of sound in the free stream and t
denotes time.

The assumptions underlying the derivation of equation
(1) have been stated in numerous places but are not always
obviously compat-ible. It is assumed here that the ratios
Uuw
n~’m

are small compared to one, where u, v, w are

induced velocity components and T“. is the velocity of the
free stream; moreover,

(
~ Al: ~+@+;;o:@) <<1

and, finally, t-hevelocity gradients at a given point of the
flow field are all of similar magnitude.

SpeciaI cases.—The particukw forms of equation (1) to be
considered are given in table I; In the steady-state equa-
tions the original independent variables are retained;’ the
t-wo-dimensions.lunsteady-stat-e equation has, homever, new
-ra.riablesdefined by the relations

Xf=x— GJfof, /=2, ~’=@ (q

and consequently the boundary conditions for any particular
example WWbe subject to the same transformation. In all
the equations the constraints imposed by t-helinearization
permit, for problems in wing theory, the boundary conditions
to be specified in the plane of the wing. ThiB plane shall
arbitrarily be taken to be z=O.

TABLE L-LINEARIZED PARTIAL DIFFERENTIAL
EQL-ATIONS OF COMPRESSIBLE FLOW

Steadystste

{

(1-Mo7&++z==o,.Jf@<l, (.1)
Two dimem.ions

(M&q+ =-$$===cf, M~>lr (B)

{

(l-Jf#)@..+*,u+@:==o,.M,<I,(c)
~ti~~ti~u~ions (.l&l)#=-OUU-@=z=O,.W~>l,(D)

+..++===O, .Vo=l,(E)

Gnsteadystate

Two dimensions 4’y-&=,-$f.=,zf=o “ (q

The Mach number range for which the equations are -ialicl
cannot be prescribed a priori since incluced velocities are
functions of -wing geometry and angle of attack. We can
say, however, that for certain configurations at sma.11a.qgles
of attack the equations and their solutions are consistent
with the assumptions. In partictiarq three-dimensional
lifting surfaces tit-h sufficient.emeepback yield solutions of
this class at 31.=1. The differential equation shows that
in this case the boundary conditions need only be specified
along strips in the Erzmsversedirection. The surfaces of the
Mach cones a.lsoare normal to the free-stream direct-ion’so
that any disturbance point makes itself felt at all points not
upstream of it. Since for these Iifting surfaces the disturb-
ances do not become excessive a-tMO= 1, we have a specific
kind of lateral strip theory that yields formal solutions
compatible -with the assumptions made.

BOUNDARY CONDITIONS

Steady state. —The boundary conditions are given in the
.z= O plane and in the case of t.wo-dimensiord theory the
wing is assumed to extend inthitely, paraUel to the y axis.
As a convenience in notation, two subscripts will be intro-
duced: the first, u, clenotes conditions on the upper surface
of the wing, that is, the limit of the function as z approaches
zero through positive values; the second, 1,denotes conditions
on the lower surface of the -wing, that is, the hmit of the
function as z approaches zero through negative -dues.

Four types of boundary cortclitionearise in practice:
1. Symmetrical non.lifting -W (boundary-value problem

of the &t kind) .—The conditions wU=w1=O hold over all
of the xy phme except. for t-heregion occupied by the wing.
On the w@, the rela.tiofis 2wti=-2w,=AwO=j (3, y) are
given, the functionj (z, y) being determined by t-hegeometry
of the contigura.tion. O-rer all of the xy plane, Awo=uu—
Ua=Oapplies.
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2. Lifting surface with specified loading (boundary-value
problem of the first kind) .—The condition AUO=UU—UZ=O
holds over the xy plane except for the region occupied by the
wing. On the wing? the relations 2uti=-%’u,=Auo=f (x, y)
are given, the function j (x, y) being determined by the
specSed loading. Over all of the w plane, AwO=Oapplies.

3. Lifting surface with specified camber and angle of attack
(boundary-value problem of the second kind) .—The condi-
tion AM=O holds over the zy plane except for the region
occupied by the wing, On the wing the relation w=j (z, y)
is given, the function j (z, y) being determined by the given
camber, twist, and angle of incidence. Over all of the ZY
plane, AWO=Oapplies.

4. Symmetrical wing with specified pressure distribution
(boundary-value problem of the second kind) .–The condi-
tion Awe= Oholds over all of the xy plane except for the region
occupied by the \ving. On the wing the relation u=j (z, y)
is given, the functionj (x, y) being determined by the specified
pressure distributioti. Over all of the w plane, AuO=O
applies.

In all cases, induced velocity u is related to pressure
coefficient CPby the relation

,.

c,=–% -“”

Unsteady state.—The steady-state boundary conditions
have been given in the most general terms possible. The
unsteady-state conditions will be limited to a more restricted
type of problem, namely, cases wherein the airfoil is assumed
to experience at t= O either an abrupt change in angle of
attack without pitching or starts to travel at the instantane-
ous velocity Vo and angle of attack a. In this way the
transient variation of load distribution and ai~foil character-
istics can be calculated for. unit angle-of-attacli change.
Similar methods can treat unit rate of pitching, or @eflection
of aileron, as well as the effects produced when the airfoiI
enters a gust of given structure. The use of solutions of
such problems in connection with operational methods is well
known in applied mathematics. Applications of these oper-
ational methods to aerodynamics have been given by R. T.
Jones (references 5 and 6) for incompressible fluid theory
and in reference 7 for supersonic flow.

If the rectangular coordinate system x’, z’, t’ associated
with equation (2) is considered to be fixed, the airfoil moves
in the negative x’ direction and the free-stream velocity is
zero. A simple distortion of the time axis is also introduced
to simplify the differential equation. Figures 1 (a) and 1 (b)
aid in the visualization of the problems involved. The air-
foil section is assumed to lie initially on the x’ axis with lead-
ing edge at the origin and trading edge at the point x’ =cO.
As time progresses the airfoil sweeps across a portion of the
x’t’plane, the Ieading edge traversing the line x’ =Mot’ while
the trace of the trailing edge is the line a’ =co—Mot’. The
region bounded by these lime and the line t’ =0 is that swept
by the airfoil. The characteristic cones of the dif?terential
equation cut the dt’ plane along lines inclined at +45’ to
either axis, If the airfoil experiences an angle-of-attack
change a without pitching, the “area” swept over by the
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(a)
‘.

(b)
b

(a) Supersonicwing.
(b) SubsonicWing.

FIGWEl.—Df&gmmforusein determiningboundwy conditions in two.rlirrrmrslomd
unsteadymotion.

wing must yield w= —VOa. On the other hand, if the airfoil :
enters a gust of constant vertical velocity wO,the region over m
-which the modification of w is effective is restricted to the
region occupied simultaneously by the airfoil and the gust.
If, for example, the edge of the gust is fixed along the t’axis,
this axis will forro the right-hand boundary of the region
over which the change !-a boundary conditions occurs. A
statement of these boundary conditions may be put in the
following form:

1. Lifting surface undergoing abrupt change or starting
from rest with given velocity .—The condition Auo= O holds
over all of the x’t’ plane except for the region swept across i
by the airfoiI. In this latter region, the relation w=j(x’,t’) ‘
is given, the function f(z’,t’ ) being determined by the modi-
fication in airfoil angle of attack, pitching velocity, aileron
deflection, or by the gust structure. Over all of the w’t’

plane, Awe= Oapplies.
The expression for pressure coefticient is

I
i

SOLUTION OF BOUNDARY-VALUE PROBLEMS

General treatment,—The use of Green’s theorem in the :
solution of second-order partial differential equations leads

~
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one to the consideration of certain particular solutions of the
gi~en equations. Because of the physicaI importance as
well as the mathemat.ica.lapplicability, tittention has been
centered on the use of a-so-called fundamental solution or
source potential. Thus, in the subsonic case, the pot-entiaI
at the point Z,.Zof a unit source locatecl at the point .&rand
applicable to equation (A), table I, is the logarithmic function

while for equation (C) the pot.ent.ial at z,y,z of the unit.
source at .$,q,~is .

Here and elsewhere -we have p’= [1–MO’[ where the bars
indicate that absolute dues are t.obe taken.

The application of these potential functions to t-he solu-
tion of boundary-value problems in subsonic linearized flow
is well know-n. Supersonic theory, however, introduces
added complications when the fundamental solutions are
considered and, although methods have been established,
the mathematical techniques are of comparatively recent
origin. The principal dif%cult.y lies in the integration of
higher~rdered s~gda.rit.iwthat appear in the three-dimen-
sional anal@. Haclamard (reference 4) resolved these
difficulties and thus a-roidecl the more specialized approach
of Volterra (reference 8). It would appear, homeverj that
a. more chrect method of derivation stems from Marcel
Riesz’s use of fractional integrations. (See, in this con-
nection, references 9 and 10.) The oddness or evenness of
the number of dimensions stilI involves considerable differ-
ences but the flna.1solutions are easily applied.

In hvo-dimensiomd supersonic flow, the potential at the
point, *,z of a unit source locatecl at t-hepoint $,f is defined
as foIloTs :

+(x, z) =0 for (x–~)’<~’(z–~)’

}

(5)
@(xjz) =–~ for (r–&)22Ba(z—r)2

In three dimensions, the source potential is

at alIpoints for which the radical k real and is zero elsewhere.
These functions are directly applicable to equations (B)

and (D) of table I. Equations (E) ancl (F) are, of course,
special, mathematical cases of equations (A) and (D) for
-which.310is O ad @, respecti~ely.

By means of the various source potentials, it is now possible
to present.solutions of the clifferentia.1equations in terms of
the prescribed boundary conditions. These conditions are
assumed to be given in the z= Oplane and subscripts u and 1
sha.11again denote conditions at z=O + and s=O —, respec-
tively. - The generaI solut-ionsappear as foIIows:

Equation (A), .MO<l,

Equation (B), Mo>l

Equation (C), Mo<l

In the last equation, the range of integration is confined to
that portion of the z=O plane that lies within the Mach
forecone of the point x, y, z, that is, vrithin the half-portion
of the right circular cone

lyirg upstream of the point z, Y; z. The semi-rertex angle p
of this cone is the Mach angle and is given by the relation

The symbol ~ was introduced by Hadamard and denotw
the “finite part” of the integral. As in the case of Cauchy’s
principal value, an improper integral is reduced by a pre-
scribed technique to a finite and unique value. By definition
(see also reference 11),

(7)

(8)

(9)

(lo)

(11)

In the two-dimensional supersonic case, the solution for
the velocity potential is expressed as the integral of a clis-
tribution of source potentia.k. In a.~ other cases, both the
source potential and its derivative appear in the integrand,
this latter expression be@~ identified with the doublet
potential.

Nonlifting case (symmetriwd wing, boundary-vahze prob-
lem of the first kind) .—Equations (7), (8), (9), and (10” are
applicable &rectIy to the calculation of the potential func-
tion corresponding to a symmetrical wing. The relation

\loreover ~ d~u
&=+1 follows from the condition uU.=U1. . f * dz

denotes t-helocal slope of the upper surface of the wing,
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and the solutions of the various .cquations are expressed in
terms of source distributions alone.

For example, equation (10) becomes

where the finite part sign is dropped since the integral is
proper. This equation was given by Puekett in reference 3.

The pressure coefficient on the surface of the wing is

()f++ g.,=0
Iiifting case (boundary-value proMem of the first kind) .—

From the condition wti=wl we have AwO=O and the inte-
grands in equations (7), (9), iind (10) are expressed solely in
terms of doublet distributions, while equation (8) yields the
result that conditions on either side of the wing have no
effect on the other side.

Taking equation (10) as an cxample, the solution under
the prescribed conditions is

where

A more direct evaluation of perturbation velocity u can be
obtained from the alternate expression

Similar expressions exist for equations (7) and (9).
Lifting case (boundary-value problem of the second

kind) .—This type of boundary condition cannot be solved
directly by means of the formulas which have been presented
but resolves always into the required solution of an integraI
equation, In three-dimensional subsonic wing theory, the
method of solution depands usually on serge modification of
Prandtl’s lifting-line theory although, more recently, lifting-
surface theories by Falkner (reference 12) and Cohen (refer-
ence 13) have been applied .successfully.

In the case of three-dinmmional supersonic-wing theory,
sources, sinks, and doubkts. have been utilized in two ways
in the soIution of lifting-surface problems. The first of these
methods was given by Evvard (references 14 and 15) and is
particularly powerful when one of the leading edges of the
wing is of the supersonic type, that is, when the velocity
component of the free stream normal to the edge is greater
than the speed of sound. A second method of solution was
presented in reference 16. for the. important case of wings.
with subsonic leading edges, provided the flow”fieId about”
the wing is of the conical type introduced by Busemann

(~eference 17). The essential feature of this method is the
use of differential lifting elements carrying a conshmL load
and designed for use in conical flow fields. The solution
consists of determining the distribution of loading over lhcsc
elements so that the resultant induced vcrtica-1velocity at,
any point on the lifting surface satisfies the local boundary
condition. When approached from this standpoint, the
problem again requires the solution of an integral equation
but the equation is of the form

J ‘ j(x,)dx,
w(x)= —

a xl—x
(15)

.

and is thus well lmown from low-speed airfoil-section theory,
Inversions of this equation have been provided by Allen
(reference 18) and von Mises and Friedrichs (referenco 19).

I
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FIGIIRE2.–Lifting-surfaceelementcarryfngconstantload.

Figure 2 shows the elemental lifting surface to be used.
The sides of the element extencl back from the tip of the
Mach cone, making angles 8 and 6+ A6 with the positive a
axis or free-stream direction. The vertical velocity incluccd
at the point x, y, O by the element will be a function of ~,

Ac?, and ~ or, changing the notation, 0, At?,and w where

O+At?=@ tan (~+A6)

Denoting the gradien~ of this vertical velocity with respect

to Oby %> it follows that

~ws=o lim w(@+A@,~j–w(fl,w)
m-= AU-JO

where w’(o,w) and w(8+A6,w) are the velocities induced by
right-triangular lifting surfaces with constant Ioading and
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with vertex angles eqmd to ~ and 6-1-A&respectively. The
velocities induced by the constantly loaded surface are
determined directly from equation (13). The resuh of
these calculations yield the following expressions:

For u<O

The term ~ is the load coefficient and is equal to the d.i&r-

ence between pressure coefficients on the lower cmcl upper
surface of the wing,

Ap prPu ~ _~—.— =
!-ifl pi %

NonEfting case (boundary-value problem of the second
kind) .—In the previously discussed lifting ease, the induced
vertical-miocity field of a constantly loaded element -was
calculated. h analogous type of element c-an also be
developed for use in the. determination of nordift,ing wings
with prescribed pressure distributions. It is apparent that
dtierential expressions similar to equations (16a) and (16b)
must be derived which establish the induced field of the z
component of perturbation velocity for a conical-flovr ele-
ment with constant vertical velocity. From equation (12),
the following expressions result:

For M<8

(17a)

where pressure coefficient-CPand surface slope h are

The application of equations (17a) and (17b) to the
determination of a thickness distribution supporting a.given
pressure distribution consists of detemnining X as a function
of esuch that the desired pressure results. The essential
simplification of the method is brought about by the use of
elements that lead to single integral equations of sta.nda.rd
form.

APPLICATIONS

YAWED TRIANGULAR LU?TINGSURFACE

Consider a yawed, trianguhir flat plate with subsonic
leading edges such as is indicated in figure 3. Relative to

the z axis or free-stream clirection, the sides of the triangle
make the angles ~. and & so that the total ~ertex argle is
30+3*=2A. The quantities 80,81,and a are also introduced
where

Oo=fl tan 60

I
MO

The vertical induced velocity at any point on the wing
can be found from equations (16a) and (16b), provided the
distribution of the loading factor C is known.
C= C(8), the down-washis given by the expression:

s:’@)d’EE%d”d

Setting

(18)

Since the lifting surface is flat, the function d(t?) must be
found such that. WZ.Ois independent of a for —8~<a<60..
The integral equation can be greatly simplfied by inte-
grat~~ the al variation by parts and then t-akkg the partial
clerivative of both sides of the equation with respect to w.
In this manner, equation (18) recluces to

which becomes

Jb ‘O C(6)d@
‘=Z -e, w–e

(20)

The soMion of equ%tion (2o) can be written
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and, if the integrated loading of the wing is finite,

c(e) = J(of:l;(:_oo) (22)

Substitution of equation (22) into equation (18) yields the
two relations

6 AH,(e,, e,)+.BH2(f30,81)1wz=o,.—
2V0 ~

and

=& [–AH,(6,, 6.)+lW,(@,j 6.)]W2.O 2V0

where

sal da,~l(dhOJ=1alJ(I—q’)(q—8J(al+8,)”
and

J9’Hz(e,,6’,)= dcq

1 cd,’~(1 –CO,’) (q-e,) (cd,+19J

(23)

(24)

..

(25)

(26)

Equations (25) and (26) may be integrated by the standard
methods for elliptic integrals and, after substituting into
equations (23) and (24) and solving for A and 2?,one gets .

and

(27).

(28)

where

~= Heob’l– Jo-%’)O-e?j.
e,+61 (29)

and E’ is the complete elliptic integral of the second kind with
modulus ~1 —G’.

The load distribution.over the wing can now be ctdculated
from equations (22), (27), and (28). It folIowe that

Ap 2@l) 2a

d–[,

2G (@O–8) O+zdot%—=— .— ._
!7 VO’ PE’ e,+e, 1(6,+o),(6’,-e)”(30)

Typical load distributions over a yawed wing are shown in
figure 4 for 13tan 81=0.6 and for P tan ~. equal to O,0.3, 0.6,
and 0.9. ‘

Integration of equation (30) over the surface of the
triangular wing determines for lift coefficient the expression

(31)

where A is sideslip angle and 2A is the angle between the
“leading edges. Equation (31) was derived for wings with
subsonic leading edges and supersonic trailing edge and
consequently is valid only for cases for which

P+A <90°
A+ A</.L
A–A>O (32)

Mo
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FIGURE4.—Angle-of-attackload distributionoverymvedtriangularplan form,8 hm ;j -0.0.

DOWNWASH BEHIIfDTRIANGULAR WIN’GIN SUPERSONIC FLOW

The second application will show how doublet distributions
may be employed in the cdctdation of downwash in the wake
of an unyaived triangdar wing with subsonic leading edges.
The expression for the velocity potent.id will be gi~-en in
general form, but in order to avoicl.det.aiIedarttdysisthe value
of do-wnwashis deter.tninedonly along the center line in the
plane of the wing.

/
/

//
//

//
/’

B
FKWRE5.—Triangularwingand waketogetherwith regionsusedin cnlculut!ngdowmvash,

A plan view of the wing and wake is shown in figure 5.
The load distribution over the wing is found from cqurttion
(3o), after setting 80=131,to be

1

I

““

I
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(33)

where -?27’0has the modulus ~~ lIoreover,

Jz& udx—.

so that the jump in potential @.—@l on the surface of the
wihg is

4.– 4Z=Z >~eo2x’–i3’y’ (34)

and for points in the wake is

.
4.– @l=g+; >I$O%’-Pv- (35)

where co is the root, chord of the ~m. Since the wing and
it-s vm.ke form a discont.inuity surface for the perturbation
velocity potential and since for aIl points on this surface

it foLlowsfrom equation (10) that,the velocity potential at an
arbitrary point z,y,z is given by the rela,t.ion

where r is that portion of the fig and vvakeforward of the
XIach forecone from the point z, y, z and @u—@Zis given by
equations (34) ancl (35).

The -valueof the dovrnvvashaft of the wing and along the
z axis wiII be calculated from equation (36), thus

[
‘W= :. 4(Z, g, z’)1Z=O

#=Q

is to be detamined. In carrying out. these calculations, it is
necessary to consicler t-ivosegments of the x axis behind the
*:

Region A extends from the trailing edge to the point where
the trail@ Jlach cones from the tips of the wing intersect
the z axis and thus includes -dues of z satisfying the in-
equality

COSZSCQ(l+L?Q)

Region B includes -raluesof z for which

Co(l+eo) sit

The final expressions for dowmvash in the trro regions are
found, after some manipulation, to be

Region A: w _2 E’z– (1–k2z)Kz+E~ydo—.
~<— rE’Ji2 o

–s
k .K–E dk

I& rJk-(1+ MC)

Region B: w_zEl , & J“~Edk .~–~TuE’o ~ k+eo (38)

where

Wo

K

KI ,K?

E

El, E2

k,

k,

induced -rerticaI-i-elocity on the wing

complete elIiptic integral of the first kind

complete eIIiptic integd of the first kind with
moduli kl, h, respectively.

complete elliptic integral of the second kind

complete elIiptic integmd of the second kind with
moduli I&,kz, respectively

CQ80
x—co

x—co
Coeo

l?igure6 shows the variation of ~ along the z asis for var-

ious -ralues of the parameter #o=B tan 6.. The asymptotic
values at x= m are also indicated and can be shown to agree
-with the values of dovrrrrwshat.in.flnity for a wing viith the
same span load clistribution in incompressible flow. The
cliscontinuit,yin clownwash at the trailing edge is a character-.-
ktic pro~erty of supersonic-type trailing edges.

For wing swep f .45°
b%plk%

;: .$ ;;;
. .

.6 .6 f.16

.8 .8 /.28
----kymp+ofic values

f.o U.i .9.72 .

.4_
\ i : .;:

.8 —---,.---

~ ~ -------
Wl :. .6

.6 / ~
/ /

.8

.4
1.0 L2 L4 L6 1.8 .ZIO Z.? 24

& disfance in chords

FiGrEE6.—l”miationof dommwzshon z o.risbehinda triangularwing pIottsdas a [unction
of distanrsin chordlengths.

Denoting clown-washat this point. by w,, LagerStrom and
Gra.ha.m(reference 20) have shown that

w, E’o–b’o
—=x

.—
%*Q (39)

A more detded development of the results shown in figure
6 has been given in reference 21.

TWO-DIMEXWIOhrWU?WTE4DYI.Il?TPROBLEMS

11has aIready been pointed out that, in the case of unsteady
mot ion in a two-dimensional compressibk-flow field, the
linearized partial-difi%rential equation for the perturbation
vcdoc.ity potential can be transformed into the same form
that has been considered iD solving steady-state problems
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in supersonic wing theory. This immediately indicates the
possibility that for certain types of boundary-value probknns
in the unsteady case an analogy can be establishedwith three-
dimensiomd lifting-surface problems.

As an example, consider an airfoil that has been flying
at supersonic speed and then.experiences at t’= O an abrupt
angle-of-attack change without pitching. Since the angle-
of-attack change is assumed to take pIace at t!=0, it can be
assumed that previous to this time the induced velocities of
the wing are zero aud only subsequent perturbations are
to be calculated. Throughout the swept area in the x’t’plane
(fig. 1) the vertical induced velocity w is constant and equal
to —VOa, Elsewhere in the z’ =0 plane there is no dis-

34.
continuity in the value of pressure, that is, ~, 1s continuous

at z’=0.
Suppose now that the mea..is a wing plan form and that

the free stream is directed along the t’axis. The character-
istic cones of the unsteady problem become the h!lach cones
of the steady-state problem, and the hlach number of the
free stream is ~fi since the characterii.ticilines in the figure
are inclined 45° to the axes. Moreover, the induced ver-

tical velocity is # and the perturbation velocity in the free-

bd A correspondence can thus be estab-stream direction is ~ -

Iishedbetween the unsteady problem and a three-dimensional
lifting-surface problem.

As outlined, the boundary-value problem is one of the
second kind, that is, w is specified on the wing and
Au=Aw=O off the wing. In this particular example, how-
ever, the edges of the wing are of the supersonic type and
no interaction exists between..the two surfaces of the lifting
plate so that pressures on either side can be. calculatecLby
the methods used for symmetrical nonlif ting wings. Thus,
from equation (12), for z’>0.

@

and for all z’

p(t’, z’, Z’)=—q(t’, 2’, —2’)

The expressions for the indicial load coefficient ~ are as

follows:
Region A (between lines x’=t’, t’=0, and x’=cO–34J’)

Ap_4a
gMO ““- (41a)

Region B (between lines x’ = —t’, x’=t’, and z’ =cO—M#)

Ap_ 4a I

[
Mg’+t: + 4M02—1

_ii – d-’ F arc Cos x’ i-Md ul!~

( )1~+arc sin ~

Region C (between lines x’ =–Mot’and z’ = –t’

AP— ,4CY

7—W

(41b)

(41C)

‘p with time,The growth of ~ as obtftinrd from equations

(41a), (41b), and (41c), is shown in the “portion of figure 7
designated “supersonic”. At t’ =0 the loading jumps to the

value * and is constant along the entLir(?chord.M, This vtduc

persists throughout the previously denoted Region A and
thus, with advancing time, moves rearward along the chord,

leaving the trailing edge at t’ =l&s Over t.hc forwmd

portion of the chord the familiar Ackeret type of stcady-
state loading becomes effective,spreading back from the

leading edge and occupying the entire chord length mftcr

— -.“-M:-IPrevious to i!’=M* a transition region be-

tween the two types of constant loading exists, and subse-
quent to this time this transition region moves aft and

leaves the trailing edge at t’=~

,

FIGCBE7.-Pressurs distributionson wingundergoingsuddenmglc-ohttack clnmgcat1’=0.

For purposes of comparison, the growth with time 01 the ~
angle-of-attack indicial loacl coefficient for subsonic flight is
also shown in the part of figure 7 ent.itlecl“subsonic.” Since “
in this case the lifting-surface analogue involves subsonic
leading and trailing edges, the analysis requires the solution
of a boundary-value problem of the second kind, The ‘
method of Evvard (reference 15) was used to obtain the.
results shown. It is to be noted that the expression

Ap 4a—.—
q A’ro

holds at t’ =0 for all values of Mach number.
Figure 8 shows the variation of the indicial lift function
C~a(t’) defined by the relation

.

(42) ‘

as a function of Mach number and half-chords s
(=2%) ,
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F1GGX38.—Indicislhft-eumesIopefar Mach nombersbetw%snOsnd 1.4%hownto time
requiredto travel12hslf-chordlengths.

trwreled. The curve at IkIo=O was fist studied by
TTagner (reference 22) and R. T. Jones (reference 6). Since

the starting value isj& c.= (t’)must initiallybe intiite.

Immediately afterward, ho~ewr, it assumes the value fi and
then rises to the asymptotic value of 2ir. At a llach number
of 0.4 the starting value of CL=(t’) is 10 followed by a- de-
.decrease for the time required to travel approximately one-
haIf chord length and finally a-steady rise takes place to the

~~
asymptotic value

~w”
At fd&=O.8 ‘the behavior is

similar. The dashed portions of the curves were determined
from the known variations of the functions and were not
calculated explicitly. The aspptotic values of OL= con-

sistent with the Prandtl-Glauert correction become so high,
however, with increasing ~Iac-hnumber that the assumptions
of smaII perturbation theory are undoubtedly invalidated
near 41.= 1 for sufhient,ly large values of s. The initial
portions of the subsonic curves shown in the figure are,
however, valid results of the theory. The nature of the
indic.ia.l lift function is somewhat different at. supersonic
31aeh numbers in that the beginning portions of the curves
are flat. The curves rise afterwards, however, in a tite
time to their steady-state value. From equations (41a),
(41b), and (41c) the expressions for CL=(t’) are easfly cal-
culated for .ZG> I and are as follows:

First time interval O<t’< &

CL=(t’)=+0 (43a)

1 arcCosif’+?docrt’rw
+~m co

1 1—+“.-(q–~’jl~o]’-
fkfoco

Third time interval & <t’

(43b)

(43C)

Some of the above restits,along with further developments

involving the entrance at supersonic speed of an unrestrained

airfoilinto a gust, have been given in reference 7.

SWEPT-BACK WENGS AT -MI=l

Consider now the special form of the basic differential
equation for the ease .Z1O=1. As given in table 1, equation
(E), the velocity- potential satisfies Laplace’s equation

4.,+4..=0

in two dimensions. The boundary conditions need, there-
fore, to be given along strips norms.1to the free-strewn direc-
tion. Equation (7) expresses the solution of the equation in
terms of twodimensional sources, sinks, and doublets-where,
in these variables,

har.=lni(y–d’+ (-r]’

‘The proposed problem is the determination of the angle-
of-att-ack load dietribution over a swept-back lifting plate,
the leading edges wilI be assumed straight lines while t-he
trailing edge -will,for the time being, be left. a.rbit.raxy. The
nature of the wing is thus indicated somewhat arbitrarily in
figure 9 (a).

Denoting the semivertex angle by & so that the equa-
tions of the leading edges are

y= *Z tan 6.= &7nx (44)

it follows from equation (7) that since

w ah—. —
Z)z Z)Z

t-hevelocity potentialisgiven by the relation

JwA@o(%d dq
N%Y,a =;T _m (y_q)’+&

-where

A@o(z,y) = J: AUo(.t,T,O)d~

(45)

It is then possible, after integrating equation (45) by parts
and imposing the condition that A@o(z,y)= O at T= +mx, to
calculate the derivative of @tith respect to z and t-hueobtain
for Wo,induced vertical velocity on the wing, t-he expression

-J–1 ~ AUO(X,T) ~T
‘o= 2X -m y–q

(46)
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(a) a

x
(b)

(a] Plan formwith arbltmrytraCingedge.
(b) Plan formsatisfyingKutta wndition.

FIGUEE9.—Swept-backwingsfor analysisat Mo=l.

This integral equation is to be solved for Avo, the velocity
W. being assumed constant on the wing and equal to —VOa
v’here a is angle of attack. The load distribution can then
be calculated from this solution by means of the relation

The remainder of the analysis can best be divided into two
parts: The fl.rst case treating values of z between O and CO,
the second deaIing with the remaining values of z on the
wing.

Case I: OS x= cO.—Since the lcading edges of “the wing
are of subsonic type, singularities in pressure occur at these
edges so that the required solution of equation (46) is of the
form

Substitution into equation (46) and use of the fact that
A40(x, y) is an even function of y leads to the result A= 0,
B= — 2W0. Hence

A@o(x,y) ‘—” - “” “-(49j= — 2woJii2x~-y~

and
AP _ –4wom2x 4am2x
T–?rodm-’4-”

(50)

Case II: coSw-Let the equation of the trailingedge be

y=a(z) or z= fz”(y) (51)

using in equation (46) the fact that

AUO(x,Y)= –Avo(z,-y)

the expression for W.becomes

–1 s J?n~2qAvod77C(Z)2~AvOdq_ -1_— —.
‘o=% o yz—qz 2T a(z) y~—qz

(52)

If, on the surface of the wing, A#&q) is known, then, in
the wake,- the discontinuity in the velocity potential is
A#o[a*(q),~] since no contribution to the jump in potmntialis
made past the traihng edge. It folIows that if on the wing

then, in the wake

[

Zk#&t,q) &z*AVO(Z,~)= A ~z ?l@o(x,q)
-@+A aq 1 (53)

Z.Cfs*(v)

VOAP [a%), d ~a*=—
2 !7

~ +j[a*(~), ~21 (54)

Substituting equations (53) and (54) into equation (52) and
introducing the Kutta condition that loading at the trailing
edge is zero, one gets the modi.fledintegral equation

(55)

where ~he variables a, al now replace y2, V2,respectively.
The function

d
j(z, CT)=2W0 o--;:y: (56)

satisfies.equation (55) and it remains to determine a(z) so
that pressure is zero at the trailing edge. But from equation
(531

and thus

~Z and _?3(lc,~),F(lcj~) are incompletewhere k!=*

integrals with modulus k=JI—krzand &gument

d

.—
1 ?/2 ‘-sin — l——k ~2#!

(57)

clliptoic

$=nrc

,

1

I

1

I
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At the trailing edge y=a(z) and

where the elliptic ktegds are now complete. If load co-
efficient is set equal to zero, the differentia.1equation

(58)

L follows.where k=l/1–~%2

The integration of equation (58) leads to the shape of the
trailing edge for -which the Kutta condition is satisfied.
Figure 9 (b) shows the pla.n form of the wing. It can be
shown that the slope of the extended trailing edge approaches
~he slope of the leading edge.

FIGUEE10.—Lmddistributionoversmept-backpfanformat itfo=1.

In figure10 the load distribution is shown at. three span-
wise stations for the case when the wing is cut off along a
line normal to the free-stream direction. Over the center
section of the wing the Ackeret type of distribution exists.
The remaining sections have discontinuities in slope of the
loading at the point where the chord line is cut by the Nlach
cone arising a.t the trailing edge of the root chord. This
behavior of the loading has been noted elsewhere for swept-
back -wingsat higher kIach numbers. (See, e. g., reference
q3.)

Ltit coefficient d~ of the wing is given by the expression

SS
T.E. @

— dxCL=; :bdy ~.E. g

where S and i5are, respectively, area and semispan of the
wing and the first integal extends from the leading edge to
the ~railingedge. This equation may be rewritten as

PROBLEMS ~’ LINEARIZED SUPERSONIC MCC?JGTEEORI” 26
rbcL=&n o A(#J(T.~.,y)dy (59)

-where Ad (1’. ~., V) is the jump in potential at the trailing
edge and thus equal to the circulation function I’ (y). The
fo~owing results‘are obtained:

I’(y) =2mVocoa, OSyS.A

I’(v) =2Voab [E(k, #) –(1–iF)F(k, t)], ~~y~ b (60)

wherek=d1—~and A is the lateraI distance to the in-

board tip of the-wing. (See&9 (b).) In figure 11 t-hevalue
“of

2

I

0

g

hbf

;0

0 .2 .4 .6 .8 /.0 L2 !.4

FIGURE 11.—Spau.wfsedistributionof circulationfor swept-backwing at .Jfo=l, b=U325 co
@l Jo and AE=L57 t911h.

r
VOCLWYtan80

is plotted as a function of cot,~n~. for a -wingwith

semispan b= 1.325 co t-an & and aspect ratio AR=4.57 tan
&. Results of the integration of equation (59) are shown in

figure 12 where ~.
AR

is plotted as a function of —.tan 80

31 I I I I I I
4.0 4.4 4.8 52 56 60 6’.4 8.8

AR/fan 6 e

FIGUBE12.—Lfft-ve slope as a furretfonof aspectratiofor swept-back wing at .Ma=l.

The methods presented here can be a.pplied to the case of
the s-wept-back wing with tips cut off parallel to the free
stream. In this case a lIach cone originates not only at
the trailing edge of the root chord but also at the intersection
of the Ieading and the lateral edges. On the portion of the
wing downstream of this Xtach cone, the load distribution is
mo~ed so that an abrupt discontinuityy exists at the hfach
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cone and zero loading is effective over this part of. the wing.
A similar effect on this type of swept-back wing has also
been noted at higher hlach numbers in reference 23.

AMESAERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

MOFFETT FIELD, CALIF., ~ec. %?, 1948.
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